今天给各位分享大数据技术应用实验报告的知识,其中也会对大数据技术应用实验报告总结进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

大数据分析在疾病与健康研究方面的应用

大数据分析在疾病与健康研究方面的应用

大数据分析技术将在以上方面发挥着特殊的作用。

一、疾病与健康研究

在疾病与健康研究方面,我们可将其分为三个子方面:健康研究、亚健康研究和疾病研究。

1、健康研究

中国是地域辽阔的多民族国家,不同地区不同种群的人的基因和健康指标有所不同,同一地区同一种群的人在不同的性别和年龄上健康标准也有差异。深入研究和分析上述人群的健康规律,对卫生保健、健康促进、疾病预防和治疗有着重大的指导意义。例如:

1.1 对体检数据分析和挖掘,得出不同地区、不同人群的健康差异,以确定精确的不同人群的健康标准,针对不同人群制定适宜的防病,治病方法以及预后标准,并量身打造个性化,地区化的健康评估模型。

1.2 在制定不同地区不同人群的参考值时,可进一步分析健康指标在不同性别、年龄和季节的差别,以及权重比,从而完善适合于国人全面的系统化的更科学的健康参考值。

1.3 人体存在的内在平衡,使得各个可观察数据间有其特有的规律,基于经验只能发现简单的规律如钙、磷常数等,使应用数据挖掘等大数据分析技术可以主动发现复杂的系统性的人体医学规律,大幅提升防病,治病以及预后推测的技术水平,并且也对亚健康有个更科学的判断依据,以及了解健康到亚健康的逐渐失衡的过程。

1.4 对孕妇在孕产期、产后及新生儿的健康数据进行深入分析,研究孕产妇和新生儿的健康规律,开发对孕产妇和新生儿的健康评价和因素的评估模型,给出更科学的孕产妇和新生儿保健的指导。

1.5 对儿童成长的体检数据分析和挖掘,研究儿童的健康规律,开发对儿童成长的评价和因素的评估模型,分别适应中国辽阔的地域和众多的人群,给出更科学的儿童成长发育指导。

1.6 对老年人的健康数据分析和研究,研究老年人的健康特点,开发对老年人健康的评价和因素的评估模型,给出更科学的老年人养生的指导。

1.7 对健康人的精神和心理数据进行深入分析,制定健康人的精神和心理参考标准,开发对健康精神和心理的评价和影响因素的评估模型,给出更科学的精神和心理卫生方面的保健指导。

2、亚健康研究

世界卫生组织将机体无器质***变,但是有一些功能改变的状态称为“第三状态”,也称为“亚健康状态”,主要包括:功能性改变,而不是器质***变;体征改变,但现有医学技术不能发现病理改变;生命质量差,长期处于低健康水平;慢性疾病伴随的病变部位之外的不健康体征。

对亚健康进行深入分析与研究对保持健康状态,预防和纠正亚健康状态以及对疾病的预防和治疗都有十分重要的意义。例如:

2.1 研究亚健康与疾病间的相互关系。研究各种可观察指标(体检数据)在亚健康中的权重,以及在不同地区、人群中的分布。应用时间序列,线性/非线性回归研究亚健康观察指标之间的关联性。通过亚健康体检数据挖掘,分析导致疾病的影响因素,建立评估模型来预测危险度,并进一步建立疾病的预测模型。

2.2 研究亚健康与健康间的相互关系。通过对体检人群的地区、职业、年龄等因素的分析,研究最新的健康和亚健康的人群分布。不同的人群地区环境不同,生活习惯不同,加入亚健康医学指标以外的相关外部数据(如职业、饮食、习惯、性格、爱好等)后,可发现综合因素对亚健康的影响,以及这些因素的各自权重,及相关关系,从而探究出亚健康的原因,对预防和治疗亚健康起着指导作用。

2.3 研究亚健康治疗和预后的研究。通过对亚健康治疗和预后的数据分析,评价治疗效果,评估最佳治疗方案,进一步开展对专科亚健康治疗和预后的研究,同时研究其与疾病的关系。

2.4 对精神和心理亚健康的研究。如对常见的精神亚健康状态:如神经衰弱、抑郁、焦虑和强迫等症状,进行数据归纳整理、分析挖掘,从而导出精神和心理亚健康的新知识发现,探究出精神疾病的原因,对预防和治疗精神疾病起着指导作用。

2.5 将住院和社区健康管理数据相结合,进行因素权重分析和多因素的特性抽取,最后形成模型指导治疗。最理想的情况是个体化评估模型,为每个病人建立专用预测模型。

3、疾病研究

中国面临的严重危害人民健康的疾病包括:

传染性疾病,如结核病、艾滋病、SARS、禽流感、甲型H1N1流感等;

慢性非传染性疾病,如恶性肿瘤、脑血管病、心脏病、糖尿病等;

精神和心理疾病;

小儿出生缺陷。

对患有各种疾病的病人的医学数据及相关数据的研究分析,对各种疾病的预防和治疗都有十分重要的价值。例如:

3.1 对传染性疾病,如结核病、艾滋病、SARS、禽流感、甲型H1N1流感等疾病的研究。应用数据挖掘技术对传染性疾病的数据进行分析,找出传染性疾病的发病规律,揭示传染性疾病的病因,进一步摸索出传染性疾病的变异规律,建立传染性疾病的预测模型。

3.2 对慢性非传染性疾病,如恶性肿瘤、脑血管病、心脏病、糖尿病等疾病的研究。应用数据仓库技术和数据挖掘技术对慢性常见病的数据进行分析,找出慢性常见病的发病规律,探索慢性常见病的病因,进一步摸索出慢性常见病的并发症规律,科学评估各种治疗方案的疗效,建立慢性常见病的预测模型。

3.3 对精神和心理疾病的研究。应用数据仓库技术、数据挖掘技术和数理统计技术对精神和心理疾病的数据进行分析,从广泛的多变量集中找出影响精神和心理疾病的主要因素,在遗传学、后天影响和病理学等多方面探索精神和心理疾病的病因,科学评估各种治疗方案的疗效,建立精神和心理疾病的预测模型。

3.4 对小儿出生缺陷的研究。应用大数据分析技术对儿童出生缺陷的数据进行分析,从广泛的大变量集中找出影响儿童出生缺陷的主要因素,在环境、遗传学、病理学等多方面探索儿童出生缺陷的病因,建立儿童出生缺陷的预测模型。

3.5 针对门诊和住院病人数据在线分析统计学差异,寻找阳性案例,为研究提供素材,并为科研的预实验提供思路和准备。对住院数据进行多维度分析和挖掘,横向达到单病种的水平,纵向包括所有可观测数据,所收集来的知识有很大可能会启发医学专家有新发现。

3.6不同 治疗手段和治疗效果的在线分析。结合收集来的大量资料全面分析,尽量提前全面的了解治疗的临床效果。

3.7 药品治疗效果在线分析,治疗效果、副作用、对其他疾病的效果评估。结合收集来的大量资料全面分析,尽量提前全面的了解新药和老药。目前的药品不良反应主要靠医生的通报,对医生的职业素养和敏感有很大的依赖,而使用数据挖掘及数据库中的知识发现,可以极大限度地改进这项工作。

二、环境与健康研究

环境因素对健康造成的损害较其他健康损害复杂,是微量、慢性、长期和不可逆转的。环境健康影响与公众利益息息相关,环境健康损害如得不到妥善处理还将转化为社会、经济问题。环境与公共健康研究以人类生态系统可持续发展研究为基础,关怀人类现在和未来的健康与安全,从环境研究途径关注社会、经济活动对人类生理和心理的健康影响,探索环境变迁对人民健康造成危害的预防和治理措施。

应用大数据分析技术对环境健康的研究,主要包括发现案例、发病机理和临床治疗研究,预防和治理各类环境流行病在污染源以及污染途径控制的研究等。例如:

1. 应用大数据分析技术研究环境因素对健康的影响,实行 一体化的环境和健康监测,并在全国实现数据共享。

2. 应用大数据分析技术研究环境污染对儿童的影响,以解决环境对儿童所造成的不健康和疾病迅速增长的问题,从而给予儿童特殊注意的环境和健康指导。

3. 应用大数据分析技术开展职业病和职业多发病的预防预测。对于各种职业的发病分布和严重程度,以及对职业病的深入分析。不仅包括传统意义的职业病,也包括不同职业的不同的疾病分布和在病因中的权重。另外,还可以分析不同职业的暴露特点进而对病因进行研究。

4. 应用大数据分析技术开展对空气污染显著提高城市人群呼吸道和过敏性疾病的发生 率的研究。

5. 应用大数据分析技术开展噪声污染损害儿童的听力和干扰他们的学习能力的研究。

6. 应用大数据分析技术开展快餐业的发展使肥胖病发病率不断增长的研究,尤其是不合理的营养对儿童健康的影响。

7. 应用大数据分析技术开展对转基因生物技术的应用对自然界生物和人类基因的潜在影响的研究。

三、医药生物技术与健康

生物技术涵盖生命科学的所有领域,医药生物技术是生物技术的重要组成部分。当今人类面临的人口、食物、健康、环境和资源问题,无不与之紧密相关。医药生物技术最鲜明的特点是大量新思想、新技术、新材料、新方法和新产品引入医学研究和医疗保健之中,如全新的医学成像技术、基因工程技术、微电子技术、干细胞工程技术、组织工程技术、纳米技术、生物芯片技术、克隆技术、酶工程技术、细胞工程技术、发酵工程技术、蛋白质工程技术、生物医学工程技术、基因组与蛋白质组技术、生物信息技术和中医药技术等及其产品,将大大提高疾病预防、诊断、治疗和药物设计研制水平,以及对突发事件(如传染病和生物恐怖等)的检测、预防与治疗水平。

以大数据分析技术为核心的生物信息技术在由众多新技术构成的医药生物技术中发挥有独特的作用。例如:

1. 利用生物信息技术进行生物信息的存储与获取。

2. 利用生物信息技术开展基因的序列对比、测序和拼接。

3. 利用生物信息技术进开展基因预测。

4. 利用生物信息技术进行生物进化与系统发育分析。

5. 利用生物信息技术进行蛋白质结构预测和RAN结构预测。

6. 利用生物信息技术进行分子设计和药物设计。

7. 利用生物信息技术进行肿瘤分类及遗传学分析。

8. 利用生物信息技术开展在生物分子层面对精神病的研究及遗传学分析。

9. 利用生物信息技术开展在生物分子层面对如H1N1等传染病的研究。

四、卫生宏观决策支持

卫生宏观决策支持系统是以数据仓库为数据中心、以数据挖掘为技术核心、以商务智能为展现工具的综合卫生信息平台。它可以建立在各级别卫生系统上,如医院、地区卫生系统、全国卫生系统,为各级卫生部门提供智能决策系统,深入了解卫生系统的历史和现在,把握卫生系统业务发展的未来,评估卫生系统内部各部门的业务效绩,帮助各级决策者提供最佳实施方案,给决策者一双慧眼,清晰认知系统内各方面变化趋势和业务得失,使对系统各部门的评价、考核、奖励更加科学、公正、客观,使系统内各级关系更加和谐,积极发挥各部门的潜能,提高系统的整体业务水平和经济效益。使用商务智能辅助决策,可以提供各种有价值的信息,各种事件的关联,以及不同于微观的角度分析各种卫生信息,如预防接种基本数据,传染病报告等等。

以上是小编为大家分享的关于 大数据分析在疾病与健康研究方面的应用的相关内容,更多信息可以关注环球青藤分享更多干货

「SAECCE议程剧透」新能源汽车大数据应用——机遇与融合

导读

新能源 汽车 大数据的利用不仅在 汽车 产业内部释放了巨大的数据红利,未来也必将成为 汽车 产业与其他产业融合的重要纽带。随着我国“新基建”的不断推进,高速低延迟的5G网络覆盖与新能源 汽车 充电桩的建设,势必会加速新能源 汽车 的发展与数据井喷。由此可见,大数据技术在新能源 汽车 上的应用会加快 汽车 产业向信息化与智能化迈进的脚步,而新能源 汽车 大数据与电力等行业的融合还将产生出巨大的蓝海市场。

2020中国 汽车 工程学会年会暨展览会(SAECCE 2020) 将于 2020年10月27-29日 在 上海 汽车 会展中心 举办。迄今为止,SAECCE年会已成功举办26届,成为在国内举办的 汽车 行业标杆活动之一。

本专题分会以 “新能源 汽车 大数据应用——融合与机遇” 为主题,邀请国内外权威专家主旨演讲和互动讨论。通过聚焦“大数据背景下新能源车辆全局优化式能量管理方法研究”等若干议题,共同交流新能源 汽车 大数据应用的主流技术与最新发展趋势,加速新能源 汽车 大数据技术成熟,并加大 汽车 产业的辐射带动能力。

N01:新能源 汽车 大数据应用——机遇与融合

会议时间地点

2020年10月27日 13:30-18:00

上海 汽车 会展中心

协办单位

吉林大学 汽车 工程学院

会议主席

王震坡

博士/教授/博士生导师,北京理工大学电动车辆国家工程实验室主任、新能源 汽车 国家大数据联盟秘书长

王震坡,教授、博士生导师,北京理工大学电动车辆国家工程实验室主任、新能源 汽车 国家大数据联盟秘书长。入选了教育部“新世纪优秀人才”、北京市“ 科技 北京百名领军人才”、 科技 部“中青年 科技 创新领军人才”、 国家“万人计划”和机械行业“‘十二五’先进 科技 工作者”。主持了国家自然基金重点项目(动力电池系统热失控与安全管理)、国家重点研发计划项目(分布式驱动电动 汽车 集成与控制)、国家863计划项目(电动 汽车 充换电设施设计集成与管理)等纵向项目12项,发表第一作者或通讯作者SCI论文29篇(ESI高被引3篇),第一作者EI论文60余篇。第一作者出版专(译)著4部(“电动车辆动力电池系统及应用技术”入选“十二五”高等教育本科国家级规划教材),授权第一发明人发明专利24项。获国家 科技 进步二等奖1项,省部级科研一等奖3项,二等奖2项(1项排名第一),中国 汽车 工业科学技术一等奖1项(排名第一),北京市教学成果一等奖1项。

联合会议主席

许楠

博士/副教授/博士生导师,吉林大学 汽车 工程学院

许楠,吉林大学 汽车 工程学院车辆工程专业 副教授兼博士生导师,工学博士,博士后,新能源 汽车 国家大数据联盟理事,美国电气电子工程师学会(IEEE)会员,目前担任Applied Energy、IEEE Transaction on Vehicular Technology、IEEE Transaction on Power Electronics、International Journal of Electronics和SAE Journal等国际期刊审稿专家。发表新能源 汽车 领域论文二十余篇,授权发明专利10项,软件著作权13项。作为项目负责人承担国家自然科学基金青年基金项目、国家博士后科学基金面上项目、吉林省 科技 发展计划项目以及企业的合作研究等项目。荣获国家教育部博士生新人奖,入选国家留学基金委国际清洁能源拔尖创新人才培养项目(iCET2019),吉林大学优秀青年教师重点培养计划等。

主要研究城市智能交通系统规划与评价、车辆全局优化式能量管理、人-车-路系统数据挖掘与分析、新能源车辆动力系统控制与评价、开放式绕组电机控制、智能辅助驾驶。

01

演讲嘉宾简介及演讲摘要提前看

大数据+区块链在新能源 汽车 动力电池溯源管理方面的应用研究

刘鹏

北京理工大学副教授,硕士生导师,新能源 汽车 大数据联盟副秘书长

演讲要点

1、新能源 汽车 动力电池发展现状。

2、新能源 汽车 动力电池溯源管理平台建设及应用现状介绍。

3、大数据及区块链技术在新能源 汽车 动力电池溯源管理方面的应用现状及最新研究。

4、动力电池数据管理所面临的问题和挑战。

演讲摘要

概述近年来新能源 汽车 和动力电池发展数据研究现状,以及大数据平台建设及应用状况,并对大数据及区块链技术在新能源 汽车 动力电池溯源管理方面的应用及研究进行介绍,对动力电池数据管理方面所面临的挑战进行分析和展望。

一种基于数据的电动 汽车 全工况行驶能耗评价方法

袁新枚

吉林大学 汽车 工程学院教授

演讲要点

1、电动 汽车 能耗评价的需求。

2、一种新型的电动 汽车 能耗模型及基于数据的能耗评价方法。

3、仿真实验结果及讨论。

4、该方法在高速路充电站规划上的一个应用。

演讲摘要

智能网联新能源 汽车 的能量管理策略

宋珂

同济大学 汽车 学院燃料电池创新研究所所长

演讲要点

1、智能网联 汽车 概述。

2、智能网联 汽车 的通信技术。

3、智能网联新能源 汽车 能量管理技术发展历程。

4、智能网联新能源 汽车 能量管理技术发展趋势。

演讲摘要

智能网联 汽车 与新能源 汽车 将是未来 汽车 技术发展的两个重要方向。当今 社会 和人们对这两项技术的协调发展提出了更高的要求。通过使用智能网联技术(ICT),新能源 汽车 可以与外部世界(例如其他行驶车辆、道路基础设施,互联网等)进行信息实时交互,这就是所谓的车联网系统(V2X)。在对各种交通信息进行深入分析的基础上,车辆可以识别当前行驶状况并对未来驾驶状况进行有效预测,从而实现车辆动力系统能量管理的实时优化,以满足不同驾驶条件下的车辆驾驶需求。这不仅能大大改善新能源 汽车 的燃油经济性,也能够有效缓解了交通拥堵问题。介绍近年来智能网联技术在新能源 汽车 上的应用情况,基于智能网联技术的新能源 汽车 能量管理策略研究现状以及智能网联技术与新能源 汽车 技术协调发展的趋势。

大数据在新能源 汽车 安全风险防控的应用研究

张照生

北京理工大学机械与车辆学院副教授

演讲要点

1、新能源 汽车 安全情况统计分析。

2、新能源 汽车 安全预警与防控方法研究。

3、典型事故案例数据分析。

演讲摘要

基于新能源 汽车 国家监管平台数据,统计分析车辆报警、事故车辆相关情况,从大数据角度分析影响新能源 汽车 安全相关因素,提出新能源 汽车 安全预警和防控方法,并以具体事故案例分析新能源 汽车 预警情况,为新能源 汽车 安全管控及产业 健康 发展提供技术支撑。

大数据背景下新能源车辆全局优化式能量管理方

法研究

许楠

吉林大学 汽车 工程学院 副教授,博士生导师,新能源 汽车 大数据联盟理事

演讲要点

1、新能源车辆能量管理方法研究现状。

2、大数据背景下全局优化式能量管理方法所面临的机遇和挑战。

3、"信息-物质-能量"三层式全局优化架构的建立及应用。

4、全局优化式能量管理平台的应用前景。

演讲摘要

概述近年来新能源车辆能量管理方法研究现状,介绍大数据为全局优化式能量管理带来的机遇,明确全局优化式能量管理方法所面临的问题和挑战,提出“信息-物质-能量”三层式全局优化架构以解决全局优化式能量管理方法实际应用问题。最后,针对全局优化式能量管理平台未来在区域交通能耗优化等方面的应用,提出了相关建议与展望。

数据驱动的锂离子动力电池管理算法 探索 研究

韩雪冰

清华大学车辆与运载学院助理研究员

演讲要点

1、基于云端大数据的电池管理是未来的发展方向。

2、基于数据可以有效的实现电池的安全预警。

3、基于数据可以有效的实现电池的寿命估计。

演讲摘要

在新能源 汽车 使用过程中,伴随着电池的使用,电池性能不断衰减,电池组内单体间的不一致性持续增加,一致性问题还可能导致电池组的失效,引发安全问题。随着云端数据的广泛应用,电动 汽车 的数据能被监测、记录。基于这些数据可以有效的评估电池组一致性、估计电池寿命,进行电池安全预警,实现更加安全可靠的电池管理。

大数据背景下基于储能应用的电动 汽车 电池的

二次利用

班伯源

中国科学院合肥物质科学研究院副研究员

演讲要点

1、退役电动 汽车 电池二次利用的必要性。

2、电动 汽车 锂电池的衰减现象的本质。

3、退役电动 汽车 电池二次利用的关键技术 SOH估算。

4、退役电动 汽车 电池二次利用国内应用实例。

演讲摘要

近年来电动 汽车 (EV)产业飞速发展,为了保证 汽车 的动态性能和行驶安全,电动 汽车 电池在一定服役时间或性能下降后就需要更换。退役 汽车 电池二次利用是将保留了足够的性能的退役电动 汽车 电池组,用于特定的储能系统中。在本报告中整理了锂离子 汽车 蓄电池二次利用的相关法律法规,收集了SOH估算的相关方法,特别是针对目前大数据背景下的提出了整合电动车能源管理系统的SOH估算方法,列举了退役 汽车 电池可能的二次利用的利用场景。最后,根据目前国内退役电动 汽车 电池二次利用的现状,提出了相关建议与展望。

新能源车与外部环境的数据融合带来的机遇和

挑战

王川久

北京泓达九通 科技 发展有限公司董事长

演讲要点

1、大数据让新能源车看的更远,了解的更多,同时我们对车辆也有了更深的了解。

2、车辆与道路交通系统的关系。

3、大数据能给我们带来什么。

4、几个大数据的应用场景。

演讲摘要

新能源 汽车 与外部环境的大数据交换,将使车辆更好的融入道路交通系统,提高整个交通系统的效率,同时车辆的设计、生产、销售、质量控制等各个环节均发挥出与以往不同的作用。

关于SAECCE 2020

2020中国 汽车 工程学会年会暨展览会(SAECCE 2020) 将于 2020年10月27-29日 在 上海 汽车 会展中心 举办,诚邀 汽车 及相关行业的企业高层、技术领军人物、资深专家学者、广大 科技 工作者参与会议。SAECCE以“ 汽车 +,协同创新”为主题,围绕新能源 汽车 技术、智能网联 汽车 技术、 汽车 关键共性技术,深度探讨如何快速推动技术创新,重塑新型产业格局。

中国 汽车 工程学会年会暨展览会(SAECCE)已成功举办26届,成为在国内举办的 汽车 行业标杆活动之一。此外,原定于今年5月在北京召开的第七届国际智能网联 汽车 技术年会(CICV 2020)将和2020中国 汽车 工程学会年会暨展览会(SAECCE 2020)合并举办。

SAECCE2020将组织1天(2场)全体大会、50多场专题分会、20多场(论文交流)技术分会,展览面积约10000平米,预计将吸引3000多位来自政府机构及行业组织、整车企业、零部件企业、高校及科研院所的代表参会及参观。

欢迎广大企业、高校、科研院所等机构、以及广大 科技 工作者通过组团或个人报名的方式积极参与!

02

SAECCE 2020 日程架构

大数据在未来生活中的运用?

           哈尔滨理工大学孙名松谈大数据在高校智慧校园中的应用

摘要:  2月15日,哈尔滨理工大学软件学院院长、教授孙名松在CIO时代APP微讲座栏目作了题为《大数据在高校智慧校园中的应用》的主题分享,

关键词:

CIO时代APP

微讲座

2月15日,哈尔滨理工大学软件学院院长、教授孙名松在CIO时代APP微讲座栏目作了题为《大数据在高校智慧校园中的应用》的主题分享,具体从小数据时代与大数据时代、大数据在高校智慧校园中应用的案例两部分展开叙述。

一、小数据时代与大数据时代

“数据(data)”在拉丁文里的意思是“已知”,也可以理解为“存在”。所以“数据”就是“存在”,“大数据”就是“大存在”。研究大数据,就是研究大存在,亦即研究一切物质、一切行为、一切思想,以及人类自身。

数据充斥并改造着人们的生活、工作。数据化是指把现象转变为可指标分析的量化形式的过程,其中包含对世界的梳理、理解,并形成可保存的经验。计算和记录共同促成了数据的产生,是数据化的根基。而数字化是把模拟数据转换成0、1表示的二进制码,方便人类使用现代技术对数据进行更好的处理。数据化是一种思想,数字化是一种手段;数据化古而有之,数字化方兴未艾。

小数据时代依靠随机采样,其原则是以最少的数据获得最多的信息。但如此,则无法了解一些微观细节,不利于对某些特定子类进行分析。而“参差不齐是世界的本质”,细节缺失将会影响到对整个自然活动、人类活动的探索与研究。此外,随机采样以研究者的理论前提为设计基础,只能对已遴选的问题进行解答,而难以虑及其他问题。也就是说小数据时代是以极其有限的信息面对有“偏见”的问题。

大数据时代,意味着将世界数据化,意味着世界的本质就是信息。世界不仅被看成一串事件的组合,更被看做信息的***,数据的***。这是世界观的深刻变革:人类具备以往认识并处理事件的经验而不盲从于经验,人类采集“数据”但更明确“所见、所思、所得”皆为“数据”,我们生活在数据的海洋之中,我们自身即为数据。

以上,从小数据时代到大数据时代,伴随或产生了以下几种转变与认识:

1、意识到“样本”等于总体。用更大、更全、更综合的态度来观察、理解、关照世界。

2、大数据对于精确性的要求降低。在小数据时代,因为数据少,所以对数据的精确度要求非常之高,而当大量数据出现时或者要求数据量大时,必然需要接受数据的纷繁复杂。

3、要意识到数据错误并不是大数据的固有特性,而是需要处理的实际问题,该问题可能长期存在。

4、混杂绝不等于错误。混杂是大数据的常态,且应该是一种基本态和标准态。

5、大数据揭示了传统样本无法揭示的细节信息,大数据是通往“精准”处理的基本途径。

6、大数据时代,不再热衷于追求因果关系,而是试图探寻不同事物之间的关系,在此基础上找到可供观察的关联物,以进行预测。而预测,是大数据应用的核心所在。

7、相关关系被阐释之后,可进行因果关系的分析。但是必须注意到,因果关系只是相关关系的特殊形式,因果关系在大数据时代已经不是解释世界的基础;相关关系是一种较为普通的存在,在大数据时代更容易被发掘,可以更高效地指导实践,甚或随着大数据的发展,以往的因果关系可能会被证伪,或被视为相关关系。

其中第1点是大数据对于认识论的改造;第2—5点体现了大数据时代与传统时代对数据要求的迥然不同;第6和7点则是数据间逻辑关系的优先性的颠覆。从实践的角度而言,第1点可以作为前提,第2—5点可以作为数据搜集与处理的准则,第6和7点或可作为数据解释的指导方向。

二、大数据在高校智慧校园中的应用

2015年国家提出并制定了“互联网+”行动计划,将“互联网+”上升到了国家战略。“互联网+”的提出必将给高校智慧校园建设增加新的内涵、注入新的动力。借助“互联网+”推动数字校园加速向智慧校园升级,充分利用云计算、物联网、移动互联、大数据等一系列新技术、新理念、新模式,打造全新的大学智慧校园,有力支撑大学未来发展战略,带动人才培养及评价方式的创新、提升校务治理水平,提供多层次的个性化服务和智能化管理决策,大学智慧校园建设的核心内涵可以概括为“全面的环境感知、无缝的网络互通、弹性的云生态圈、海量的数据支撑、开放的学习环境、个性化师生服务、智能化管理决策、高效的校务治理”。

高校在信息化进程中,产生了各类结构化和非结构化的数据,包括教学管理数据、教学资源数据、学生信息数据等,大到高校的治校方针策略,小到学生的日常消费,数据繁多,类型复杂。利用大数据技术对这些数据进行搜集、分析,转化为高校管理与服务可利用的资源,将对智慧校园建设起到非常重要的作用。

下面举例说明大数据技术在智慧校园中的应用。

1、综合校情展示

对学校管理者而言,通过综合校情分析展示,可以对学校的在校生情况(本科生、研究生)、课程情况、科研成果情况、奖助情况、就业情况、教工情况、教师分布、干部情况、家具情况、资产情况、房屋情况、排名情况、消费情况等方面进行直观的了解和横向纵向的对比。结合历年数据变化规律可以为辅助决策提供依据。不同系统之间数据的关联性或许能够给管理者决策提供新的思路。

综合校情展示主要包括基础数据分析展示和行为数据分析展示。

基本数据分析:如招生数据分析、学生数据分析、毕业数据分析、教师数据分析、课程数据分析、成绩数据分析、就业数据分析、高校资产数据分析等。

行为数据分析:学校食堂就餐情况分析、一卡通消费行为分析、上网行为分析、图书借阅行为分析、图书馆使用时长、上网时长/流量和成绩之间的相关性分析、重点人群群体的特征刻画分析和预警等等。

举例说明:

(a)高校就业信息统计。从高校学生的毕业去向、就业单位、就业地区、就业行业、就业薪资等多维度进行统计分析,全面呈现高校就业情况,为高校就业办发现学生就业规律、有针对性的进行学生就业指导提供支撑。

(b)教学信息统计分析。为校领导呈现了高校热门课程排行、各院系开设课程统计和学生成绩统计分析、挂科率分析,全面呈现学生在校期间的学习与成绩分布,为指导高校课程开设、提高学生成绩提供支撑。

(c)一卡通统计分析。展现了高校学生整体消费能力、消费偏好,为后勤部门了解学生餐饮、购物偏好,有针对性的提升服务水平提供支撑。

(d)各生源地消费能力。按照生源地统计该地区学生的消费能力,来详细查看在某一段时间学生消费额和消费次数的统计。

(e)学校网络使用状况分析和学生上网行为统计。通过对学生上网的地址进行统计、分析,结合其基础的个人信息数据,可按不同的维度,比如性别、籍贯、院系等来统计出不同类别的人群,对于某类网站的使用频率。如果记录的日志足够详细,甚至可以统计出学生在网上消费的喜好或偏向,对于后勤或学工等部门也是一个比较重要的参考。

应用到的相关技术有:数据关联分析、多源数据整合、海量日志数据处理、benchmark、指标体系建立、AgileBI、全文检索引擎。

2、公共资源使用情况分析

对于高校而言,食堂就餐、体育场馆、教室、图书馆、校医院等各类公共资源有限,师生没有很好的途径获知这些资源的服务能力情况,导致经常发生排队、拥挤的情况,给师生学习、生活带来了不好的体验。随着学校信息化的推进,各部门管理信息系统逐步建设并投入使用;随着技术的发展,特别是物联网和智能感知设备的出现,使数字校园智能服务成为了可能。

数据来源于一卡通消费、一卡通门禁、无线网、校园安全视频监控等。

(a)食堂、澡堂人员密度状况及建议各食堂、公共澡堂各时段就餐人员密度情况,各类人员(年级、籍贯、职称等)就餐爱好、习惯等。

(b)教室使用状况、人员密度、各时间段教室使用情况、教室人数等;基于无线网络进行考勤。

(c)会议场馆、体育场馆使用状况及人员密度。为师生提供会议场馆的可用性查询,体育场馆的使用情况(有课、无课等),以及人员密度发布。

(e)图书馆座位使用状况及人员密度发布,提供图书馆座位空闲情况及图书馆内人数等。

(f)校内人员密度分布。根据学校无线网数据、安全视频监控信息,识别学校人员热力分布图。

应用到的相关技术有:数据关联分析、数据挖掘(聚类分析)、海量日志数据处理、多源数据整合(日志数据与结构化数据整合)、高速内存数据库、分布式全文检索引擎。

3、个人数据报告

面向校园师生用户提供个性化数据服务,展现师生在校园内学习、消费、生活、健康等

方面的个人行为习惯以,帮助学生从严谨的数据分析更加了解自己,以及与他人的差异,帮助校园师生感受信息化带来的人文关怀与改变。

数据来源自一卡通消费、图书馆门禁、图书借阅系统、校园网络系统、体育场馆门禁等。

(a)校园卡账单及消费习惯分析报告;

(b)图书馆进出频次、时长及借阅习惯分析报告;

(c)网络账单及上网习惯分析报告;

(d)体育健身锻炼学期报告。

通过高校官方微信号、APP进行手机推送,移动互联网时代方便用户及时阅读、分享、传播。

面向校园师生用户提供个性化数据服务,展现师生在校园内学习、消费、生活、健康等方面的个人行为习惯以,帮助学生从严谨的数据分析更加了解自己,以及与他人的差异,帮助校园师生感受信息化带来的人文关怀与改变。

应用到的相关技术有:数据关联分析、数据挖掘(用户画像)、海量日志数据处理、多源数据整合。

4、图书馆电子期刊资源使用效率分析

高校每年花费资金购买著名期刊论文集,为师生用户提供便捷的文献检索和下载服务。图书馆电子期刊资源的使用情况、不同学科对于不同电子期刊资源使用偏好的差异,是图书馆亟需了解的内容。通过对高校用户期刊文献检索记录的大数据分析,优化论文期刊购买方案,使图书馆可以采购到师生更加需要的资源(传统纸质+电子资源),提高现有采购效率。

学校通常的做法是向数据商(如万方、CNKI)购买电子期刊资源访问统计数据,而这种方式基于学校整体访问数据做统计分析,无法基于用户做访问详情的分析统计,从而无法获取到基于不同学科门类、不同学院和专业特点、不同教师等级的不同人群期刊访问情况分析,也无法了解到不同资源库的使用情况横向对比分析。对师生的检索关键词进行挖掘也是非常重要的方向,而传统的做法无法了解学校师生用户检索电子期刊资源的检索偏好、检索热门等具体信息。

出口网络日志数据记录了师生访问电子期刊资源库的行为,通过大数据技术对出口URL日志等数据进行处理及关键信息提取,关联学校内部用户信息数据,将实现图书馆电子资源使用的全面分析以及人群分析,为图书馆采购决策提供辅助。

数据来源自图书馆采购电子期刊资源列表、师生上网URL日志、师生上网身份认证等。

应用到的相关技术有:数据关联分析、海量日志数据处理、多源数据整合(日志数据与结构化数据整合)、分布式全文检索引擎。

5、校园舆情监测

在移动互联网大潮之下,无论是正面信息还是负面信息都会以更快的速度传播。学校声誉对学校招生、就业、评优评先等方面有很大影响,随着移动互联网和社交媒体的普及,高校越来越重视学校的社会评价。目前部分高校会利用互联网数据监测学校声誉,通过大数据的手段通过实时监测互联网新媒体上与学校相关的新闻、传播话题和用户反馈,了解学校舆情、声誉及影响力。

应用到的相关技术有:文本挖掘、语义分析(正负面判断)、语义相似度计算、弹性爬虫引擎、分布式全文检索引擎。

我所了解的大数据在智慧校园中的应用还包括教学信息统计分析,通过对课程知识结构进行样本分析,结合教育过程,综合学生学习成绩分布来验证课程讲授过程的合理性和工程教育认证中的达成度来综合分析课程开设的合理性。

又如,学校资产管理信息分析,借助于资产管理信息平台实现对校园基础设施、教学实验设备、校园通信网络设备等数据的采集分析,为学校基础建设方向、教学实验设备的维护、校园网通信设备的升级改造提供数据支持。

“智慧网格学生管理平台”,以高校信息技术和数字化校园建设成果为基础支撑,建设以社区网格、管理网格、教育网格三个维度的网格为载体,面向学生发展的综合管理与服务流程优化的总体框架。对学生培养全生命周期中的生活、学业、思想等发展过程进行主动辅导,形成协同可持续的智慧管理与导引发展新模式,具有学生画像、学生行为预警(在校状况、学业、消费、身心健康)、学生家庭经济状况分析、学生综合数据检索、学生群体分析等功能,能够辅助学工部门、院系管理者和辅导员开展学生安全教育管理、学生心理健康辅导、精准资助等工作,提升工作效率,促进学生管理工作创新与实践。

由于时间关系,今天就交流这么多。谢谢!

大数据应用的实训目的万能版怎么写

分块书写。大数据实训教学大纲一、实训目标 基于Hadoop为核心,通过实训,达成以下目的,认识大数据,认识大数据技术在新时代对企业的重要性。大数据应用,是指大数据价值创造的关键在于大数据的应用,随着大数据技术飞速发展,大数据应用已经融入各行各业。

有关大数据应用的论文(2)

有关大数据应用的论文篇二

《大数据技术对财务管理的影响》

摘 要:大数据可以快速帮助财务部门建立财务分析工具,而不是单纯做账。大数据应该不仅仅局限于本单位的微观数据,更为重要的关注其他单位的宏观数据。大数据技术不仅带来了企事业单位财务数据搜集的便利和挑战,而且也衍生出了诸多关于单位人员个人信息保密等问题的积极探索。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

关键词:大数据;财务管理;科学技术;知识进步

数据是一个中性概念。人类自古以来几千年的辉煌变迁,无外乎就是数据的搜集和使用过程而已。纵观古今中外的人际交流与合作,充满着尔虞我诈和勾心斗角,那么他们在争什么呢?实际上是在争夺信息资源;历史上品相繁多的战争,实际上不是在维持什么所谓的正义和和平,抑或为了人间的正道,而是在争夺数据的使用权;“熙熙攘攘皆为利往、攘攘熙熙皆为利来”的世俗变迁逻辑已经让位于数据游戏的哲学法则。人类自英国产业革命以来所陆续发明的技术,尽管被人们美其名曰“第四次科技革命的前沿技术”,实际上不过就是“0”和“1”两个数字的嬉戏而已。正如有学者指出的,汽车技术、生命科学技术、基因技术、原子能技术、宇宙航天技术、纳米技术、电子计算机技术,看起来美轮美奂,实则隐含着杀机,那就是由于人们把技术当成了目的后,导致了“技术专制”后的“技术***”和“技术灾难”。人类一方面在懒惰基因的诱惑下,发明了诸多所谓的机械装置,中国叫“机巧”;另一方面又在勤奋的文化下,发明了诸多抑制懒惰的制度和机制。本来想寻求节俭,结果却越来越奢侈;本来想节约,结果却越来越浪费;本来想善良,结果却越来越邪恶;本来想美好,结果却越来越丑陋。正如拉美特里所说:“人是什么?一半是天使,一半是野兽。当人拼命想成为天使的时候,其实他会逐渐变成野兽;当人想极力崇拜野兽的时候,结果会逐渐接近天使。”我们不是在宣讲宿命的技术,我们只是在预测技术的宿命。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

一、大数据技术加大了财务数据收集的难度

财务数据的收集是一个复杂的系统工程,国际上一般采用相对性原则,即首先利用不完全统计学的知识对数据进行初步的计算,接着对粗糙的数据进行系统的罗列,最后对类型化的数据进行明分梳理。使用者如果想进入该数据库,就必须拥有注册的用户名和密码。由于国际上对于网络数据的监督均采取了实名注册的模式,所以一旦该用户进入到核心数据库之后想窃取数据,一般都会暴露自己的bug地址源,网管可以循着这一唯一性存留,通过云计算迅速找到该网络终端的IP地址,于是根据人机互动原理,再加上各种网吧所安装的监控平台,可以迅速找到数据库的剽窃者。如果按照上述数据变迁逻辑,那么财务数据的收集似乎变得易如反掌,而事实并非如此。因为:①数据的量化指标受制于云计算服务器的安全性。当云服务器受到不可抗力的打击,如地震、水患、瘟疫、鼠疫、火灾、原子能泄露或各种人为破坏的作用,数据会呈现离散型散落。这时的数据丢失会演变成数字灾难;②各种数据版权的拥有者之间很难实现无缝隙对接。比如在经过不同服务器的不同数据流之间,很难实现现实意义上的自由流通。正如专家所指出的,教育服务器的事业单位的人员数据、行政部门人事管理部门的保密性数据、军事单位的军事数据、医疗卫生事业的数据、工商注册数据、外事数据等在无法克服实际权力的分割陷阱之前,很难实现资源的共享,这时对数据的所谓搜集都会演化为“不完全抽样”的数字假象。由此而衍生的数据库充其量只是一部分无用的质料而已。

二、大数据技术影响了财务数据分析的准确性

对于搞财务管理的人来说,财务数据的收集只是有效实现资源配置的先决条件,真正有价值的或者说最为关键的环节是对财务数据的分析。所谓“财务数据分析”是指专业的会计人员或审计人员对纷繁复杂的单位人力资源信息进行“去魅”的过程。所谓“去魅”就是指去粗取精、去伪存真、由此及彼、由表及里、内外互联,彼此沟通、跨级交流、跨界合作。在较为严格的学术意义上,分析的难度广泛存在与财务工作人员的日常生活中。大数据技术尽管为数据的搜集提供了方便法门,但同时加大了财务人员的工作量和工作难度。原先只是在算盘或者草稿纸上就可以轻松解决的数据计算,现在只能借助于计算机和云图建模。对于一些借助于政治权力因素或者经济利益因素,抑或是借助于自身的人际关系因素上升到财务管理部门的职工来说,更大的挑战开始了。他们不知道如何进行数据流的图谱分析,不知道基于计算机软件技术的集成线路技术的跌级分类,不知道基于非线性配置的液压传动技术的模板冲压技术,不知道逆向网络模型来解决外部常态财务变量的可篡改问题。由于技术不过硬,导致了领导安排的任务不能在规定的时间内完成,即时仓促做完的案例,也会因为数据分析技术的落后而授人以柄,有的脾气不好的领导可能会大发雷霆;脾气好的领导只是强压着内心的怒火,那种以静制动的魄力和安静更是摄魂夺魄。所以说数据分析难度的增加不是由于财务人员的良心或善根缺失,在很大程度上是由于技术的进步和大数据理念给我们带来的尖锐挑战。对于普通的没有家庭和社会背景的财务管理人员来说,能做的或者说唯一可做的就是尊重历史发展的周期律,敬畏生生不息的科学革命,认真领会行政首长的战略意图,提升自己的数据分析技术,升华在自身的“硬实力”。否则觊觎于领导的良心发现和疏忽大意,期望技术的静止或者倒退,抑或是在违法犯罪之后天真的认为可以相安无事,可能都只会落得“恢恢乎如丧家之犬”的境遇。

三、大数据技术给财务人事管理带来了挑战

一个单位的财务人事管理牵扯到方方面面的问题,其意义不可小视。一般来讲,单位在遴选财务管理部门管理人员的时候,大多从德才绩行四个方面全面权衡。然而这种“四有标准”却隐含着潜在的危机和不可避免的长远威胁,这其中的缘由就在于人性的复杂性和不可猜度性。历史和现实一再告诉人们,单纯看眼前的表现和话语的华丽,不仅不能对人才的素质进行准确的评价,而且还会导致官员的远期***和隐性***。对于中国的***,国人大多重视了制度和道德的缘起,却往往忽视了财务管理的因素。试想如果财务管理人员牢牢践行“焦裕禄精神”,不对任何政治权力开绿灯,国有资产又如何流出国库而了无人知晓呢?事实上,中国的所有***,不论是国有资产的国外流失抑或是国内流失,都在很大程度上与财务人员有关,可能有些管理人员会强调那不是自己的责任,出纳签字是领导的授意,会计支出费用那是长官的意思清晰表示。实际上,处于权力非法授予的签字、盖章、取现、流转和变相洗钱都是违法的,甚至是犯罪的。间接故意也是应当追究责任的。值得高兴的是,伴随着数字模拟技术的演进,财务管理中的***现象和人事管理科学化问题得到了极大的改善,相关领导伸手向财务要钱的行为,不仅会受到数据进入权限的限制,而且还会受到跟数据存留的监控,只要给予单位科技人员以足够的权限,想查找任何一笔资金的走向就变得非常简单,而且对于每一笔资金的经手者的信息也会了如指掌。这在一定程度上减少了只会指挥、不懂电脑的首长的孵化几率。

四、大数据技术加大了单位信息保密的难度

IMA(美国注册会计师协会)研发副总裁Raef・Lawson博士曾经指出:“客观上讲,大数据技术的正面效用是非常明显的,但一个不容回避的事实是大数据技术为财务信息的安全性提出了越来越严峻的挑战。我们已经注意到,在欧洲大陆、美洲大陆已经存在基于数据泄露而产生的各种***活动,这些活动牵扯到美国的数据窃听丑闻、俄罗斯对军事数据的强制性战友举动、以色列数据专家出卖***世界经济数据的案件、在东方的中国香港一部分利用数据的窃取而发家致富的顶尖级黑客专家。”在数据集成的拓扑领域,大数据技术的保密性挑战肇始于蚁群算法的先天性缺陷。本来数据流的控制是依靠各种所谓的交易密码,实际上这些安全密码只是数据的另一种分类和组合而已。在数据的非线性组合和线路的真空组装模式下,任何密码都只是阻挡了技术侏儒的暂时性举动,而没有超出技术本身的惰性存在。当一个hacker掌握了源代码的介质性接洽技术之后,所剩下的就是信息和数据的搜集了,只要有足够的数据源,信息的户的几乎是轻而易举的。

2003年,北京的一家名为飞塔公司的防火墙安全软件在中关村科技城闪亮上市。该安全控制软件的开发者随机开发了一款名曰MAZE天网的软件,并且采用了“以其之矛攻其之盾”的攻防策略。测试的结果是尽管maze的源代码采用了24进制蝶形加密技术,但 FortiGate防火墙技术仍然能够阻挡住善意木马对电脑终端用户信息的剽窃和非法利用。FortiWeb已经通过全球权威的ICSA认证,可以阻断如跨站脚本、SQL注入、缓冲区溢出、远程文件包含、拒绝服务,同时防止敏感数据库外泄,为企事业单位Web应用提供了专业级的应用安全防护。飞塔公司之所以耗费人力和物力去开发这一新型的换代产品,就在于大数据时代对单位信息保密性的冲击。试想,如果一个单位连职工最起码的个人信息都不能安全存储的话,那么财务管理的科学性和人本性将从何谈起?只能说,即使在人权保护意识相对薄弱的法治环境里,我们也应该尽量提升自己的保密意识,加强对个人信息的保护和合理运用。

作者简介:田惠东(1967- ),女,汉族,河北定兴人,副高级会计师,本科学历,研究方向:财务管理,单位:保定市第一医院

大数据的应用案例以及未来发展趋势

编者按:大数据时代,数据能否成功运用将深刻影响着我们的生活质量。大数据商用越来越多,回归应用本质才好。

                   

《大数据时代》的作者维克托·迈尔-舍恩伯格在2016中国云计算大会上谈到,直到最近150年的时间里,人类的生活质量和收入才发生了爆炸式的改变,但在这之前的漫长岁月里,人类的生活质量却改进得非常缓慢。主要是因为测量世界的能力和观察世界的方式改变了,基于观察和数据,人类增强了洞察。

                      

互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。

随着观察范围和计算能力扩大,大数据时代会发生什么呢?

                      

大数据会说话

维克托说,大数据能够影响人类的能力,将使得人类可以用一个全新的方式来与周围的世界相处,即通过增加数据的数量来获得对世界更深刻的洞察。

比如,大家在拍照时,可以通过选择焦点来确定清晰的拍摄对象,这样其它地方就会被拍得模糊。那么问题来了,如果以后想看清模糊的地方,该怎么办呢?维克托给大家展示了用大数据照相机拍摄的照片,它将把所有被拍摄进来的数据收集进来,让照片局部可以在模糊和清晰之间自由转换。

这样一来,就算当初拍照的时候不知道应该突出哪个部分,事后也不会无法补救。推广到其它日常处理事务时,道理也是一样的。

再比如,大数据还可以用来帮助弱势群体。

在加拿大,有一个研究团队用大数据帮助早产婴儿。由于发现得太晚,早产婴儿经常因为感染而死亡。有一位博士给这些早产婴儿身上放置传感器后,可以通过测量他们的一系列身体指标来实时测量其体征情况。通过获取的大量数据,医生能够在在婴儿出现症状的24小时前就会提前发现,拯救这些早产儿的性命会容易很多。

              

大数据将在三大领域突破

大数据对已经对营销、电子商务、可预测的飞机维护带来了重大的影响,维克托认为,大数据接下来可能对以下这三个领域产生更大的影响。

1、无人驾驶的汽车。汽车非常昂贵,然而在欧洲,人们只有4%的时间在使用汽车,96%的时间把车停在停车场,这是非常不高效的系统。如果未来普及了无人驾驶的汽车,我们就可以过上另一种生活。

我们将只需要在手机上点一个按键,车就会自己开过来,把我们带去目的地。这种车就像没有驾驶员的出租车,可以被反复使用,效率和可持续性都得到了提升,也避免了资源浪费。

有研究发现,如果自动机动车得到普及,可以减少25%的交通拥堵,减少30%的城市停车场面积。如果北京减少30%的停车场需求,城市生活将大不一样。

2、医疗。我们的寿命现在都比较长了,但仍然希望能够更长。现在,我们的医疗水平并不是很好,由于我们忽视了每一个人的个体差异,医生会用通常的方法治疗每一个人。然而,基于大数据,我们可以做精确医疗,通过大数据分析每个人的差异,进行精确的治疗、剂量、用量,让患者更快恢复健康。

3、学习。我们要让下一代有能力了解这个世界。然而,因为没有数据,我们难以做到因材施教,所有孩子获得同样的教学,学习同样的书本。低效率的教学就是在浪费脑力、知识和我们解决问题的能力。

如果我们用大数据去分析孩子在发展学习能力时遇到的问题,就可以进行个性化的学习,就可以释放知识和理解力的力量,让每一个孩子充分开发潜能。

附:

当日,记者有幸参加了对维克托先生的采访,以下收录部分记者及同行与维克托先生的问答,以飨读者。

                

记者:如果把数据比喻为石油,石油是有国界的,那么数据也有国界吗?

维克托:这个其实每一个社会、每一个国家都是有数据的,甚至小的团体,我们都是有数据的。现在问题不是大家没有数据,而是这个国家也好,这个组织也好,是不是真正的愿意把这个数据用来做事情,真正用大数据做决策的。

大数据涉及储存、分享等,但关键在于把这个大数据真正用起来,真正能够促进经济、促进社会发展。举个例子说,现在所有车都有ABS系统,都配有GPS,如果我们把这两种数据放在一起进行分析,在那些路段上,大部分人都在紧急刹车?为什么会有这种情况出现,是车的问题,路的问题,还是控制的问题,总之,数据交叉稽核,会给我们带来新的启示。

记者:我们浏览网页、查询信息,这都属于大数据,怎么看待个人在大数据时代的隐私呢?政府管理部门应该做些什么呢?

维克托:这是一个好问题,现在数据隐私保护的方法完全是错误的。现在的做法是询问每一个客户、个人,你同意不同意公开数据,实际上,每个个体并都不知道我的数据会被怎样使用,有一些人对此并不在意,往往会点同意。这是一种错误的隐私保护的做法。

对于数据的隐私保护,可以考虑反过来的做法,可以考虑由政府设立一个规则:确定哪些企业为了哪些目的,可以以某种方式和规则来收集数据和使用,例如医疗数据,目的是治疗病人,这样的大数据收集和使用就是合理的,可以不更多顾及隐私。但是如果利用这些数据作恶,例如帮助保险公司创造保单,那是不合法的。政府应该制定措施做好隐私保护,不把这个问题扔给个人。

记者:您写的《大数据时代》,我个人觉得给IT产业吹来一股春风,您已经写了好几本书了,当时写《大数据时代》的时候,您初衷是什么呢?目前是否实现了你当时心目中的设计?

维克托:现在就是揭秘大数据时代的时间了。10年之前,我每年都办一个非常小型聚会,是一个相当高层的聚会,有微软的高层,有一些政客、经济学家、学术界专家聚在一起,讨论数据社会价值。当时有一个记者,每年据此出一个报告,有关讨论的内容。我感觉一年一年讨论过程中,有一些东西在哪里,可以真的能感觉到的,但是没有一个准确的名字,两年之后,我确定这就是数据价值,所以决定写一本书。

一定要看到这个数据深层次的价值,所谓的价值就是我们提到的数据的相关性。这是大数据的根本。大数据应用的过程可以用"旅程"来描述,我们运用数据、事实分析做更好的决策,这些都是基于事实的,不是基于主观的判断。所谓"旅程",意味着反反复复,有前进也会有后退。

希望有更多人用数据,用事实,用大数据方法辅助思考,用到讨论,这都是有意义的。我一直强调这个是一个旅程,在这个旅程中,我们不断往前,但是有时候也要后退一两步。

记者:大数据作用是预测,现在能做到准确预测吗?

维克托:至少比用其他的东西好的多的。现在大数据不是百分之百准的,但是我们现在要的东西,比我们有的东西更好。

记者:未来大数据趋势是什么?

维克托:大数据未来的趋势是怎么样让每个人使用大数据,而不只是用专业的大数据公司。透露一下,也许这是未来新书的内容。

大数据技术应用实验报告的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于大数据技术应用实验报告总结、大数据技术应用实验报告的信息别忘了在本站进行查找喔。