本篇文章给大家谈谈大数据存储技术通俗讲解,以及大数据 存储技术对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、什么是大数据,通俗的讲
- 2、大数据的通俗解释
- 3、大数据存储技术都有哪些?
什么是大数据,通俗的讲
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据***,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产,简单来说大数据就是海量的数据,就是数据量大、来源广、种类繁多(日志、视频、音频),大到PB级别,现阶段的框架就是为了解决PB级别的数据。
大数据的7大特征:海量性,多样性,高速性,可变性,真实性,复杂性,价值性
随着大数据产业的发展,它逐渐从一个高端的、理论性的概念演变为具体的、实用的理念。
很多情况下大数据来源于生活。
比如你点外卖,准备什么时候买,你的位置在哪,商家位置在哪,想吃什么……这都是数据,人一多各种各样的信息就越多,还不断增长,把这些信息集中,就是大数据。
大数据的价值并不是在这些数据上,而是在于隐藏在数据背后的——用户的喜好、习惯还有信息。
大数据的通俗解释
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据***,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
数据可以以多种形式被记录,记录的方式也是多种多样,走过的路是否被导航软件记录,在外面吃东西使用手机点单或者支付那么吃什么就被记录了,所有被记录的数据最终都会以机器代码存储于服务器,用于后续分析和查询。
扩展资料
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
大数据存储技术都有哪些?
1. 数据采集:在大数据的生命周期中,数据采集是第一个环节。按照MapReduce应用系统的分类,大数据采集主要来自四个来源:管理信息系统、web信息系统、物理信息系统和科学实验系统。
2. 数据访问:大数据的存储和删除采用不同的技术路线,大致可分为三类。第一类主要面向大规模结构化数据。第二类主要面向半结构化和非结构化数据。第三类是面对结构化和非结构化的混合大数据,
3。基础设施:云存储、分布式文件存储等。数据处理:对于收集到的不同数据集,可能会有不同的结构和模式,如文件、XML树、关系表等,表现出数据的异构性。对于多个异构数据集,需要进行进一步的集成或集成处理。在对不同数据集的数据进行收集、排序、清理和转换后,生成一个新的数据集,为后续的查询和分析处理提供统一的数据视图。
5. 统计分析:假设检验、显著性检验、差异分析、相关分析、t检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测、残差分析,岭回归、logistic回归、曲线估计、因子分析、聚类分析、主成分分析等方法介绍了聚类分析、因子分析、快速聚类与聚类、判别分析、对应分析等方法,多元对应分析(最优尺度分析)、bootstrap技术等。
6. 数据挖掘:目前需要改进现有的数据挖掘和机器学习技术;开发数据网络挖掘、特殊群挖掘、图挖掘等新的数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破面向领域的大数据挖掘技术如用户兴趣分析、网络行为分析、情感语义分析等挖掘技术。
7. 模型预测:预测模型、机器学习、建模与仿真。
8. 结果:云计算、标签云、关系图等。
关于大数据存储技术都有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
关于大数据存储技术通俗讲解和大数据 存储技术的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。