今天给各位分享云计算与大数据技术期末的知识,其中也会对云计算与大数据期末考试题进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
什么叫大数据,与云计算有何关系。
大数据:难以用常规的数据库工具获取、存储、管理、分析的数据***。
云计算:是基于互联网的相关服务的增加、使用和交付模式。
海量数据上传到云平台后,大数据就会对数据进行深入分析和挖掘。说到大数据,就不得不讲云计算。这些数据是怎么计算,怎么处理的,就和云计算分不开家。云计算是提取大数据的前提,强大的云计算能力,对于降低数据提取过程中的成本不可或缺。云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。
云计算和大数据有什么区别
云计算和大数据的区别是什么?关于大数据和云计算的关系人们通常会有误解。而且也会把它们混起来说,分别做一句话直白解释就是:云计算就是硬件资源的虚拟化;大数据就是海量数据的高效处理。
大数据技术是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。
云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化之后再进行分配使用,在云计算领域目前的老大应该算是Amazon,可以说为云计算提供了商业化的标准,另外值得关注的还有VMware(其实从这一点可以帮助你理解云计算和虚拟化的关系),开源的云平台较有活力的就是Openstack了。
大数据相当于海量数据的“数据库”,而且通观大数据领域的发展也能看出,当前的大数据处理一直在向着近似于传统数据库体验的方向发展,Hadoop的产生使我们能够用普通机器建立稳定的处理TB级数据的集群,把传统而昂贵的并行计算等概念一下就拉到了我们的面前,但是其不适合数据分析人员使用(因为MapReduce开发复杂),所以PigLatin和Hive出现了(分别是Yahoo!和facebook发起的项目,说到这补充一下,在大数据领域Google、facebook、twitter等前沿的互联网公司作出了很积极和强大的贡献),为我们带来了类SQL的操作,到这里操作方式像SQL了,但是处理效率很慢,绝对和传统的数据库的处理效率有天壤之别,所以人们又在想怎样在大数据处理上不只是操作方式类SQL,而处理速度也能“类SQL”,Google为我们带来了Dremel/PowerDrill等技术,Cloudera(Hadoop商业化较强的公司,Hadoop之父cutting就在这里负责技术领导)的Impala也出现了。
最新云计算大数据试题
云计算与大数据概述
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。
大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
大数据管理,分布式进行文件系统,如Hadoop、Mapreduce数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:
1、集成度更高。一个标准机箱最大限度完成特定任务。
2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。
3、整体能耗更低。同等计算任务,能耗最低。
4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。
5、管理维护费用低。数据藏的常规管理全部集成。
6、可规划和预见的系统扩容、升级路线图。
云计算与大数据的关系
简单来说:云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。虽然从这个解释来看也不是完全贴切,但是却可以帮助对这两个名字不太明白的人很快理解其区别。当然,如果解释更形象一点的话,云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化后在进行分配使用。
可以说,大数据相当于海量数据的“数据库”,通观大数据领域的发展我们也可以看出,当前的大数据发展一直在向着近似于传统数据库体验的方向发展,一句话就是,传统数据库给大数据的发展提供了足够大的空间。
大数据的总体架构包括三层:数据存储,数据处理和数据分析。数据先要通过存储层存储下来,然后根据数据需求和目标来建立相应的数据模型和数据分析指标体系对数据进行分析产生价值。
而中间的时效性又通过中间数据处理层提供的强大的并行计算和分布式计算能力来完成。三者相互配合,这让大数据产生最终价值。
不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极操作PB级别的数据”,确实让人兴奋不能止。
云计算与大数据要学啥?
近段时间网上开始流行一个新名词,就是云计算,于是很多人就开始产生疑问了,云计算是什么?它是做什么的?下面霍营电脑培训给你做个详细的介绍吧。
云计算的虚拟空间无限大,物联网和互联网产生的大量数据,要找一个地方集中存储和处理,就要用云来存储。比如我们平时手机或电脑存储空间不够的情况下,会把一些图片及视频存在云盘,云端。
云计算,简单说就是把你自己电脑里的或者公司服务器上的硬盘、CPU都放到网上,统一动态调用,现在最有名的云计算服务商是亚马逊的AWS。以前你要玩最新的大型3D游戏或者做了个大型3D动画需要渲染,首先想到的都是重新买一台更高配置电脑或者换个显卡等;
有了云计算之后,你只需要一台显示器,连到服务商的云计算平台上,如果想玩两天新游戏,就单独购买这两天的高配CPU和显卡,只付两天的钱,玩腻了就恢复成普通的配置;如果你今晚要做大量渲染,就买今晚几个小时的高配,第二天早上拿到成片,就可以恢复原来的配置。所有这些计算和渲染工作都在云计算服务商的数据中心统一完成,你只需要按小时甚至按分钟计费,不用再自己买电脑和服务器了。做云计算的服务商都会自建数据中心。
大数据,简单说,就是把所有的数据放到一起分析,找到关联,实现预测。这里的所有数据对应的是之前的抽样调研取得的部分数据。比如传统的市场调研方法,就是去大街上或者网上发问卷,能得到成百上千份结果就很不错了,或者邀请几个典型用户到会议室访谈一下;大数据的做法是把收集所有人的数据进行分析,把每个人都当做独立个体进行分析,而不是找群体特征。大数据的结果就是更精准,更细致,更个性化。
再比如我们经常会看一些现代谍战片,侦察部如何找到罪犯?就是通过全城监控录像,在海量数据中搜索一个人的面孔,犯罪分子只要出现在监控中都会保留一条数据及位置,从而更好地实施下一步方案,大大提高破案效率。这也是企业为什么在极力追捧云计算大数据技术。再比如京东、淘宝、今日头条、新浪、百度、网易、等购物网站,就是采用这种技术。
云计算与大数据处理
最近很火的云计算遇上了新潮的大数据,于是关于云计算与大数据直接的关系大家是众说纷纭,现在北京开运联合对于云计算和大数据关系做以下三点认识。
第一,云计算与大数据之间是相辅相成,相得益彰的关系。大数据挖掘处理需要云计算作为平台,而大数据涵盖的价值和规律则能够使云计算更好的与行业应用结合并发挥更大的作用。云计算将计算资源作为服务支撑大数据的挖掘,而大数据的发展趋势是对实时交互的海量数据查询、分析提供了各自需要的价值信息。
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
第二,云计算与大数据的结合将可能成为人类认识事物的新的工具。实践证明人类对客观世界的认识是随着技术的进步以及认识世界的工具更新而逐步深入。过去人类首先认识的是事物的表面,通过因果关系由表及里,由对个体认识进而找到共性规律。现在将云计算和大数据的结合,人们就可以利用高效、低成本的计算资源分析海量数据的相关性,快速找到共性规律,加速人们对于客观世界有关规律的认识。
第三,大数据的信息隐私保护是云计算大数据快速发展和运用的重要前提。没有信息安全也就没有云服务的安全。产业及服务要健康、快速的发展就需要得到用户的信赖,就需要科技界和产业界更加重视云计算的安全问题,更加注意大数据挖掘中的隐私保护问题。从技术层面进行深度的研发,严防和打击病毒和黑客的攻击。同时加快立法的进度,维护良好的信息服务的环境。
云计算与大数据技术期末的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于云计算与大数据期末考试题、云计算与大数据技术期末的信息别忘了在本站进行查找喔。