本篇文章给大家谈谈大数据技术职称有哪些内容,以及大数据高级职称对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

2021大数据技术专业学什么 有哪些课程

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。

大数据主要学习内容

大数据应用技术专业的毕业生未来可以从事的岗位包括数据采集、数据整理、大数据运维、数据分析、大数据应用开发等。

在知识结构的设计上,大数据应用技术涉及到数学、统计学、编程语言、大数据平台、操作系统、数据分析工具等内容,另外也会涉及到物联网、云计算等相关方面的内容。数学和统计学是大数据技术的要基础,即使从事落地应用也要重点掌握一些常见的算法。

编程语言的学习通常会集中在Java、Python、Scala、R等编程语言上,从目前就业的角度出发,Java是不错的选择。如果未来想从事大数据应用开发岗位,那么需要重点学习一下编程语言部分。

大数据平台的学习是大数据应用技术的重点学习内容之一,大数据平台的学习内容包括大数据平台的部署、调试、维护等内容。目前Hadoop、Spark是比较常见的大数据平台,同时这两个平台也比较适合初学者学习和实验。经过多年的发展,目前大数据平台的组件已经逐渐丰富,所以这部分学习内容也相对比较多。

数据分析工具的学习可以从基本的Excel开始,然后进一步学习各种BI工具,在学数据分析工具的过程中也涉及到一些常见的数据分析算法以及数据库知识。

最后,随着大数据技术逐渐落地到广大的传统行业,未来大数据应用专业的就业前景还是比较广阔的。

大数据职业发展方向

1、大数据开发方向;所涉及版的职业岗位为:大数权据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;

2、数据挖掘、数据分析和机器学习方向; 所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;

3、大数据运维和云计算方向;对应岗位:大数据运维工程师;

以最基础的大数据开发为例,入门最低薪资可达8K-1W,且该行业的薪资增长率极高。据某求职网站薪资显示,资深大数据工程师的平均在50K/月,可谓非常有“钱景”了。

大数据工程技术人员是做什么的 工作内容有哪些

近日,人社部发布通知,正式公布了十三个新职业信息,其中大数据工程技术人员就是其中之一。

大数据工程技术人员的工作内容

大数据工程技术人员是指从事大数据采集、清洗、分析、治理、挖掘等技术研究,并加以利用、管理、维护和服务的工程技术人员。

主要工作任务:

大数据采集(爬虫)、大数据清洗(ETl工程师)、大数据建模(算法工程师)与大数据分析(数据分析员);

管理、分析展现及应用等技术(大数据开发工程师);

研究、应用大数据平台体系架构、技术和标准;

设计、开发、集成、测试大数据软硬件系统;

管理、维护并保障大数据系统稳定运行;

监控、管理和保障大数据安全;

提供大数据的技术咨询和技术服务。

我推荐: 中国13个新职业公布

大数据工程技术人员就业前景如何

在企业中,大数据工程师的发展分为四个阶段:从软件技术员到助理软件工程师,再到软件工程师,最后成为高级软件工程师。据IDC的统计数字,在所有软件开发类人才的需求中,对大数据工程师的需求达到全部需求量的60%—70%。同时,大数据软件工程师的工资待遇相对较高。

大数据软件工程师的一般起步月薪在6k-1w之间,远远超过应届毕业生的两三千的薪资。有一两年的工作经验之后,薪资待遇还会提升,比如有一年工作经验的大数据高级工程师的薪资待遇差不多在年薪10w-15w之间。

在未来的几年内,大数据人才的缺口只会越来越大,企业对人才的需求远远大于供给。大数据工程师是目前国内高端计算机领域,就业薪资非常高的一类职业。

大数据工程师需要学哪些技术?

一、大数据采集

大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。

数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依然充当着许多企业的数据存储方式。当然了,目前对于开源的Kettle和Talend本身,也集成了大数据集成内容,可实现hdfs,hbase和主流Nosq数据库之间的数据同步和集成。

网络数据采集:一种借助网络爬虫或网站公开API,从网页获取非结构化或半结构化数据,并将其统一结构化为本地数据的数据采集方式。

文件采集:包括实时文件采集和处理技术flume、基于ELK的日志采集和增量采集等等。

二、大数据预处理

大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。

三、大数据储存

大数据每年都在激增庞大的信息量,加上已有的历史数据信息,对整个业界的数据存储、处理带来了很大的机遇与挑战.为了满足快速增长的存储需求,云存储需要具备高扩展性、高可靠性、高可用性、低成本、自动容错和去中心化等特点.常见的云存储形式可以分为分布式文件系统和分布式数据库。其中,分布式文件系统采用大规模的分布式存储节点来满足存储大量文件的需求,而分布式的NoSQL数据库则为大规模非结构化数据的处理和分析提供支持。

四、大数据清洗

MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Reduce(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。

关于大数据工程师需要学哪些技术,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

关于大数据技术职称有哪些内容和大数据高级职称的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。